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1 Introduction

The use of gravitational duals to study strongly-coupled field theories [1, 2] has produced

substantial progress in our understanding of both vacuum correlation functions and finite-

temperature behaviour at strong coupling. The domain in which this holographic toolbox

has been put into use is remarkably large. For instance, the hydrodynamic limit of the

duality has proved insightful in studying the quark-gluon plasma created at RHIC [3–5].

There have also been attempts to model interesting condensed matter systems using a

corresponding gravitational dual [6–9]. Much of this work has concerned relativistic theo-

ries with a conformal symmetry in the ultraviolet, which are described by asymptotically

Anti-de Sitter (AdS) spacetimes. Largely inspired by condensed matter systems, however,

this has recently been extended to consider non-relativistic theories with an anisotropic

scaling symmetry

t → λzt, xi → λxi. (1.1)

The case z = 2, which is the symmetry of a free non-relativistic theory (as the Hamiltonian

is quadratic in the momenta), is often of particular interest. Strongly-coupled theories with
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this scaling symmetry arise as critical points in condensed matter systems: two cases of

interest are where the theory has a Galilean boost symmetry together with the anisotropic

scaling symmetry, forming the Schrödinger symmetry group for z = 2 [10–12], and where

the theory has no boost symmetry, which we will refer to as the Lifshitz case [13–15].

Dual geometries realising these symmetries as isometries were obtained for the Schrödinger

symmetry in [16, 17] and for the Lifshitz case in [18].

These geometries are, of course, not asymptotically AdS. This provides an additional

motivation for studying these systems, as the generalisation of holographic techniques to

this new context may offer new insights into the nature of the relation between quantum

gravity in asymptotically non-AdS spacetimes and the dual field theory. It also requires

the development of a new dictionary relating bulk to the boundary quantities.

In the asymptotically AdS case, there is a well-developed framework for calculating

field theory quantities from the bulk spacetime. The key element in this framework is an

appropriate action principle for the bulk theory, which is finite on-shell and stationary under

variations which satisfy some asymptotic fall-off conditions. This is constructed by adding

covariant local boundary counter-terms to the bulk action [19, 20]. Correlation functions

for the field theory can then be obtained by considering appropriate variations of this action

with respect to the boundary data. One important example is the expectation value of

the stress tensor, which plays a central role in the application to finite-temperature field

theory in particular. The stress tensor is obtained by variation of the action with respect

to the boundary metric [19, 20]. This prescription has been extensively used in the context

of AdS/CFT and elsewhere. More recently, in one particularly interesting application, it

was applied to obtain a very beautiful and direct relationship between the dynamics of the

stress tensor in the hydrodynamic regime in the field theory and the equations of motion

of the bulk gravitational theory [21, 22].

Some progress has been made in extending these aspects of the holographic dictionary

to the asymptotically Schrödinger case. A black hole solution corresponding to the finite

temperature grand canonical ensemble in the field theory was constructed in [23–25]. An

action principle for asymptotically Schrödinger spaces was constructed in [25], by adding

local covariant boundary counter-terms to the bulk action as in the AdS case. However,

a stress tensor was not successfully constructed from the variation of this action. The

asymptotically Schrödinger solutions are obtained by applying a solution-generating trans-

formation to asymptotically AdS solutions, and it was proposed in [23] that the stress

tensor obtained from the asymptotically AdS solution could be re-interpreted in terms of

the non-relativistic solution. This approach was used to study the hydrodynamic regime in

this theory in [26] by re-using the results of [21]. For the Lifshitz case, black hole solutions

were obtained in [27, 28], and the energy of these solutions was studied in [29], but an

action principle and stress tensor have not yet been obtained for this theory.

To find a detailed map between bulk fluctuations and field theory objects, one might

need to find embeddings of these spacetimes in a complete theory of quantum gravity like

string theory. This was accomplished for the Schrödinger case in [23–25]. We will not

attempt to do this for the Lifshitz case here. Rather we study simply the generalisation of

the holographic dictionary at the level of the classical gravity in the bulk.
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The aim of this paper is to further develop the holographic dictionary for asymptoti-

cally Schrödinger and asymptotically Lifshitz spacetimes, focusing on the construction of

one-point functions. We only consider the case where the boundary metric is flat; the

extension to consider more general boundary metrics, and in particular the case where

the boundary metric is a sphere, is an interesting problem for the future. We will con-

struct an appropriate action principle for the Lifshitz case in section 2. We then propose

a definition of the non-relativistic stress tensor complex for the field theory which can be

applied to both Lifshitz and Schrödinger cases. A key element of our definition is treating

the variation of the matter fields appropriately. Our approach is strongly inspired by [30],

which showed that in the relativistic case in the presence of arbitrary bulk matter fields,

the stress tensor is defined by considering the variation of the boundary metric holding

fixed the tangent space components of the matter fields. We propose to apply the same

prescription to the non-relativistic cases. Considering the variation of the boundary geom-

etry with the tangent space components of the matter fields fixed turns out to be crucial

to obtain a finite stress tensor. We discuss the application of this prescription to calcu-

late the stress tensor in the Lifshitz case in general in section 3, and apply these ideas to

asymptotically Schrödinger spacetimes in section 4. In the Schrödinger case, we show that

the results obtained from our proposal agree with those obtained from the stress tensor of

the asymptotically AdS solution following the prescription of [23].

In section 5, we solve the bulk equations of motion for a general linearised perturbation

of the Lifshitz spacetime, and calculate our stress tensor for this linearised perturbation.

We find that the stress tensor for the linearised perturbations is finite. The finiteness of

the stress tensor is an important test of our prescription. We solve the bulk equations of

motion for the perturbation in a series expansion in derivatives of the perturbation along

the boundary directions. In the linearised analysis, only a finite number of orders in this

expansion make finite contributions to the boundary stress tensor.1 If we considered a

general perturbation, the departure from the background solution would be small in the

asymptotic regime, so for perturbations that fall off sufficiently rapidly at large distances,

this linearised analysis gives a relation between the asymptotic behaviour of the pertur-

bation in the bulk and the stress tensor in the dual field theory, analogous to that given

by the Fefferman-Graham expansion in the asymptotically AdS case. Note however that

for z ≥ 2, the falloff of some parts of the bulk perturbation is too slow for this linearised

analysis to be justified, and a full non-linear analysis will be required even just to relate

the asymptotic falloff of the fields to the boundary stress tensor. This also occurs for the

asymptotically Schrödinger case.

We conclude with a summary of our results and a discussion of issues and directions

for further development in section 6. In appendix A, we calculate the contribution to the

stress tensor for asymptotically Lifshitz spacetimes from counterterms involving derivatives

of the boundary fields. In appendix B, as yet another consistency check, we show that

our definition of the energy density following from the stress tensor complex agrees with

1This is different from the hydrodynamic analysis, where all orders in derivatives contribute, because we

are linearising around the zero-temperature Lifshitz geometry of [18], not around a black hole solution.
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the thermodynamic energy which would be obtained from the Euclidean action for static

asymptotically Lifshitz black holes.

2 Action for Lifshitz case

In [18], it was proposed that a holographic dual to a theory with the anisotropic scaling

symmetry (1.1) and no boost symmetry could be obtained by considering the metric2

ds2 = −r2zdt2 + r2(dx2 + dy2) +
dr2

r2
, (2.1)

where the scaling symmetry is realised as an isometry: t → λzt, xi → λxi, r → λ−1r. This

was realised in [18] as a solution of a theory with two p-form gauge fields, with a Chern-

Simons coupling between the two gauge fields. In [31], it was observed that one could

construct a simpler theory with the metric and a massive vector field by integrating out

one of the p-form gauge fields. We will consider this case, as it usefully restricts the form

of the counter-terms we can consider in constructing an action principle. The equations of

motion for this theory are

Rµν = Λgµν +
1

2
FµλF λ

ν − 1

8
FλρF

λρgµν +
1

2
m2AµAν (2.2)

and

∇µFµν = m2Aν . (2.3)

If we choose Λ = −1
2(z2 + z + 4) and m2 = 2z, this theory has a solution

ds2 = −r2zdt2 + r2(dx2 + dy2) +
dr2

r2
, A = αrzdt, α2 =

2(z − 1)

z
. (2.4)

It is straightforward to extend the analysis to a general number of spatial dimensions, but

we will focus on the case of two spatial dimensions for simplicity. We keep z general; in

the linearised analysis we will find that z = 2 is a special case, where some aspects of the

analysis need separate treatment.

We want to define an action for this theory which satisfies δS = 0 with appropriate

boundary conditions by adding appropriate local counter-terms. To preserve the diffeomor-

phism invariance of the action, these counter-terms should be covariant in the boundary

fields. We consider

S = Sbulk + Sbdy =
1

16πG4

∫

d4x
√−g

(

R − 2Λ − 1

4
FµνFµν − 1

2
m2AµAµ

)

(2.5)

+
1

16πG4

∫

d3ξ
√
−h(2K − 4 + f(AαAα)) + Sderiv,

where ξα are coordinates on the boundary at some constant r, hαβ is the induced metric,

and Kαβ = ∇(αnβ) is the extrinsic curvature of the boundary, where the unit vector

nµ is orthogonal to the boundary and outward-directed. Sderiv is a collection of terms

2We always use coordinates such that the boundary is at r = ∞.
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involving derivatives of the boundary fields, which could involve both the curvature tensor

constructed from the boundary metric and covariant derivatives of Aα. Since the boundary

fields are constants for (2.4), as the boundary is flat, this part of the action will not

contribute to the on-shell value of the action for the pure Lifshitz solution or its first

variation around the Lifshitz background. We can therefore ignore it for this section, but

it can play a role when we come to consider general asymptotically Lifshitz spacetimes.

The only scalar we can build from A on the boundary is AαAα, as A is constant along

the boundary. For the Lifshitz spacetime, AαAα = −α2 is constant, so any function of

this scalar will contribute to the action at the same order in r at large r, which is why

we consider an arbitrary function f(AαAα) in our boundary term. For simplicity, we will

choose units such that 16πG4 = 1 henceforth.

The variation of the action about a solution of the equations of motion is just a

boundary term,

δS =

∫

d3ξ
√
−h

[

(παβ + 2hαβ)δhαβ − nµFµνδAν (2.6)

+f ′(AαAα)(2AαδAα + AαAβδhαβ) − 1

2
f(AαAα)hαβδhαβ

]

,

where παβ = Kαβ − Khαβ . For the Lifshitz spacetime (2.4), πtt + 2htt = 0, πij + 2hij =

(1 − z)r2δij , and nµFµνδAν = zαrzδAt. Therefore, there are variations involving δhij and

δAt that we need to cancel. However, the variation involving δhtt has already canceled. To

avoid generating a new one from the terms involving f(AαAα), we must have f(AαAα) =

β
√
−AαAα (so that the

√
htt in this cancels the

√
htt in the overall

√
−h to give us a

term which does not involve htt). Requiring the cancellation of the other terms determines

β = −zα. The action is thus

S =

∫

d4x
√
−g

(

R − 2Λ − 1

4
FµνFµν − 1

2
m2AµAµ

)

(2.7)

+

∫

d3ξ
√
−h(2K − 4 − zα

√

−AαAα) + Sderiv.

It is remarkable that fixing a single coefficient suffices to cancel both the divergences asso-

ciated with δhij and δAt. Let us define

sαβ =
√
−h

[

(παβ + 2hαβ) +
zα

2
(−AαAα)−1/2(AαAβ − AγAγhαβ)

]

+ sderiv
αβ , (2.8)

sα = −
√
−h(nµFµα − zα(−AαAα)−1/2Aα) + sderiv

α . (2.9)

Then the general variation of the action is

δS =

∫

d3ξ(sαβδhαβ + sαδAα). (2.10)

In the background (2.4), we have sαβ = 0, sα = 0 due to cancellations between the different

terms, and this action satisfies δS = 0 for arbitrary variations around (2.4). It also has

S = 0 for (2.4).

– 5 –
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Thus, we have a finite on-shell action which defines a good variational principle for

our background spacetime. Note that an asset of working with the massive vector theory

is that the form of the possible local counterterms is tightly constrained; with the original

theory of [18], we could build several different scalars from the two p-forms, and it would

not be so obvious what a convenient form for the action is. In section 5, we will show

that the action is finite on-shell and gives a well-defined variational principle for a class

of asymptotically Lifshitz spacetimes. Before doing so, however, we want to address the

calculation of the stress tensor from the action in asymptotically Lifshitz and asymptotically

Schrödinger spacetimes.

3 Stress tensor

A core element of the holographic renormalization programme in the gauge-gravity dual-

ity for relativistic field theories is that given a well-defined action principle, we can use

it to define a boundary stress tensor as the variation of the action with respect to the

boundary metric [19, 20]. The resulting stress tensor has been shown to define conserved

charges which generate the asymptotic symmetries of the geometry in very general cir-

cumstances [30]. This stress tensor carries important physical information about the dual

field theory. In this section, we want to discuss the calculation of such a boundary stress

tensor from a bulk action principle in the non-relativistic case. We will focus explicitly on

the Lifshitz example in this section, as its treatment is simpler, but similar ideas apply to

asymptotically Schrödinger spacetimes, which we consider in the next section.

For asymptotically Lifshitz spacetimes, the dual field theory is non-relativistic, so it

will not have a covariant relativistic stress tensor, but we would still expect it to have a

stress tensor complex, consisting of the energy density E , energy flux Ei, momentum density

Pi and spatial stress tensor Πij , satisfying the conservation equations

∂tE + ∂iE i = 0, ∂tPj + ∂iΠ
i
j = 0. (3.1)

We would like to derive such a stress tensor complex by considering some appropriate

variations of the action principle we introduced in the previous section. Since the boundary

theory is non-relativistic, the boundary data does not include a non-degenerate metric; the

nonuniform r-dependence of the metric in the bulk along the boundary directions leads to

a degenerate boundary metric. It is therefore not a priori obvious how to define the stress

tensor complex. In this section we will follow the relativistic analysis as closely as possible;

we postpone discussion of the appropriateness of this approach from the boundary theory

point of view to the conclusions.

Since the background (2.4) involves a vector field, we will need to consider how this

effects the definition of the stress tensor. This issue was considered in the relativistic

case in [30], where it was argued that the appropriate definition of the stress tensor in

the presence of tensor fields was to consider the variation of a boundary frame field ê
(A)
α ,

holding the tangent space components φ
[i]
AB... of the other fields fixed where A, B,· · · denote

tangent space directions and i denotes matter species. This was shown to provide a stress

– 6 –



J
H
E
P
0
9
(
2
0
0
9
)
0
0
9

tensor whose integrals give the conserved charges generating asymptotic symmetries and

which is conserved up to terms involving derivatives of the other fields [30].

To be more specific, if we considered a background with a massive vector field which

was dual to a relativistic field theory, we should hold the components AA of the vector with

tangent space indices fixed. We would then write the general variation of the action as

δS =

∫

ǫ̂(Tα
Aδê(A)

α + sAδAA), (3.2)

where ê
(A)
α is a boundary frame field defining the boundary metric, and ǫ̂ is the associated

volume form on the boundary. That is, ê
(A)
α are the components of the frame along the

boundary directions, rescaled by an appropriate power of r such that ê
(A)
α have finite limits

as r → ∞. In an asymptotically AdS spacetime, the choice of ê
(A)
α corresponds to the

choice of the boundary metric g(0) appearing in the expansion of the asymptotic geometry

in Fefferman-Graham coordinates,

ds2
AdS =

dr2

r2
+ r2[g(0)αβ + O(r−2)]dxαdxβ, (3.3)

and the bulk frame fields are related to the boundary frame fields by e(A) = rê(A), e(r) = dr
r .

The stress tensor Tα
A was shown in [30] to be conserved up to terms involving the variation

of the matter fields,

DαTα
β = sA∂βAA, (3.4)

where Dα is the covariant derivative on the boundary defined by requiring Dαê
(B)
β = 0.

In the asymptotically AdS case, the key advantage of the prescription of [30] is that it

gives a stress tensor which is conserved in this sense. If we considered the stress tensor as

defined by considering the variation of the metric holding the spacetime components of the

matter fields fixed, we would obtain a finite result, but there would be additional terms

on the right-hand side of this conservation equation, and as a result, the stress tensor

would not in general give rise to the correct conserved charges (although the difference

is unimportant in many common examples). In the non-relativistic cases, as we will see

below, this distinction is much more important, and we must follow the prescription of [30]

to obtain finite results for the stress tensor complex.

We want to apply a similar prescription to our non-relativistic cases. In asymptotically

Lifshitz spacetimes, because of the different scaling of the time and space directions, there

is no non-degenerate boundary metric that we can associate with the boundary at r = ∞
in our spacetime. However, when we calculate the variation in (2.7), we first cut off the

spacetime at some finite radius r, and then consider the limit as r → ∞. At finite r, there

is a well-defined boundary metric. We could rescale the bulk metric by r2 so that the

spatial parts have a well-defined large r limit; the additional factor of r2(z−1) multiplying

dt2 can then be thought of as a radius-dependent speed of light, so that the limit r → ∞
corresponds to taking the speed of light to infinity in the boundary theory. In the non-

relativistic limit of a relativistic field theory, we can recover both of the conservation

equations (3.1) from the conservation of the relativistic stress tensor. If we take this point

– 7 –
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of view, then we should expect to be able to define the non-relativistic stress tensor complex

following essentially the same recipe as in the relativistic case.3

For the Lifshitz case, we assume that we have a bulk orthonormal frame

with components

e(0) = rz ê(0), e(i) = rê(i), e(3) =
dr

r
, (3.5)

and a massive vector AM . From the heuristic point of view above, the different scaling in

e(0) compared to e(i) corresponds to a scaling by the radius-dependent speed of light on the

surface at constant r. We will use indices M = 0, 1, 2, 3 to denote frame components and

µ = t, x, y, r to denote spacetime components. The spacetime will asymptotically approach

the pure Lifshitz solution (2.4) if ê(0) → dt, ê(i) → dxi and AM → αδM
0 as r → ∞.4

We therefore construct the stress tensor complex for the non-relativistic theories by

regarding ê(0), ê(i) and AM (more accurately, their limits as r → ∞) as the boundary data,

and defining

δS =

∫

ǫ̂[−Eδê
(0)
t − E iδê

(0)
i + Piδê

(i)
t + Πj

i δê
(i)
j + sAδAA]. (3.6)

As in the relativistic case, we expect that the energy density, energy flux, momentum

density and spatial stress tensor so defined will satisfy the conservation equations (3.1) up

to terms involving the variation of the massive vector field. The treatment of the matter

fields, holding the components with tangent space indices fixed, turns out to be crucial to

obtain finite results for the stress tensor.

If the boundary data are taken to be ê(0) → dt, ê(i) → dxi, then ǫ̂ is just the flat

volume form d3ξ, and we can rewrite the above definitions in terms of the coefficients sαβ

and sα that we used to write the general metric variation in (2.7):

E = 2st
t − stAt, E i = 2si

t − siAt, (3.7)

and

Pi = −2st
i + stAi Πj

i = −2sj
i + sjAi, (3.8)

where we have multiplied through by factors of the frame fields to simplify the form of

these expressions, taking advantage of the fact that the frame fields each have a single

component to leading order in the large r limit, so all indices are now spacetime indices.

Note that when z = 1, α = 0 and these definitions reduce to the familiar AdS rules.

Normally, to obtain finite quantities in the non-relativistic limit of the relativistic stress

tensor, we need to eliminate divergent contributions to the energy density and energy flux

coming from the rest mass of the particles (see e.g. [33] chapter 15). However, these

Lifshitz theories do not have Galilean boost invariance, and hence do not conserve particle

number. We will find below that the above definitions give a finite result for the energy

density, indicating that there is no divergent contribution from rest mass that we need to

eliminate.
3Working on a finite cutoff surface in this way is also similar in spirit to the analysis of holographic

renormalisation for asymptotically flat spaces in [32].
4This is a necessary condition; we will give a more precise definition of asymptotically Lifshitz boundary

conditions for more general boundary data later.
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4 Schrödinger spacetimes

Another example of non-relativistic holography is the Schrödinger spacetime [16, 17],

ds2 = −r4(dx+)2 + r2(−2dx+dx− + dx2) +
dr2

r2
. (4.1)

This solution has the Schrödinger symmetry group as its isometries (including in particular

the anisotropic scaling symmetry (1.1) with z = 2, when we identify t there with x+). It

was shown in [34, 35] that this symmetry group essentially uniquely determines this form

for the metric.

A simple action which has a solution with this metric is [25]

S =
1

16πG5

∫

d5x
√−g

[

R − 4

3
∂µφ∂µφ − 1

4
e−8φ/3FµνFµν − 4AµAµ − V (φ)

]

(4.2)

+
1

16πG5

∫

d4ξ
√
−h

[

2K − 6 + (1 + c4φ)AµAµ + c5(AµAµ)2 + (2c4 − 4c5 + 3)φ2
]

,

which gives

δS =
1

16πG5

∫

d4ξ(sαβδhαβ + sαδAα + sφδφ), (4.3)

with

sαβ =
√
−h

[

παβ + 3hαβ + (1 + c4φ)

(

AαAβ − 1

2
AγAγhαβ

)

(4.4)

+c5AδA
δ

(

2AαAβ − 1

2
AγAγhαβ

)

− 1

2
(2c4 − 4c5 + 3)φ2hαβ

]

,

sα =
√
−h(−nµFµαe−8φ/3 + 2(1 + c4φ + 2c5AγAγ)Aα), (4.5)

and

sφ =
√
−h

(

− 8

3
nµ∂µφ + c4AαAα + 2(2c4 − 4c5 + 3)φ

)

. (4.6)

This has an asymptotically Schrödinger black hole solution [23–25]. The metric is

ds2
E = r2 k(r)−

2
3

([

1 − f(r)

4β2
− r2 f(r)

]

(dx+)2 +
β2r4

+

r4
(dx−)2 − [1 + f(r)] dx+ dx−

)

+ k(r)
1
3

(

r2dx2 +
dr2

r2 f(r)

)

, (4.7)

with the massive vector and scalar

A =
r2

k(r)

(

1 + f(r)

2
dx+ − β2r4

+

r4
dx−

)

,

eφ =
1

√

k(r)
. (4.8)

This solution is obtained by applying a solution-generating transformation (the TsT trans-

formation) to an asymptotically AdS vacuum black hole solution. In [25], it was shown
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that the action (4.2) is finite and satisfies δS = 0 for this black hole solution. However,

some of the coefficients sαβ in the variation diverge, so a naive attempt to define the stress

tensor will fail [25, 36].

As in the asymptotically Lifshitz case, there is no non-degenerate boundary metric for

the asymptotically Schrödinger spacetimes. However, as before, there is a non-degenerate

metric on the surfaces of finite r, which degenerates in the limit as r → ∞. We therefore

define a stress tensor complex for these spacetimes by adapting the relativistic prescription

in [30]. In this case, the non-relativistic theory is meant to be obtained from the relativistic

theory by light-cone reduction, with the momentum along the light cone direction inter-

preted as the conserved mass density ρ, which satisfies a conservation equation involving

the mass flux ρi. The combination which appears as the coefficient of δe
(A)
α in δS is again

−2sα
A+sαAA = (−2sα

β+sαAβ)eβ
(A)

. There is no obvious convenient choice of orthonormal

frame. We therefore identify the components of the stress tensor complex in this case as

E = 2s+
+ − s+A+, E i = 2si

+ − siA+, (4.9)

Pj = −2s+
j + s+Aj , Πi

j = −2si
j + siAj, (4.10)

and

ρ = −2s+
− + s+A−, ρi = −2si

− + siA−, (4.11)

where all the indices are again spacetime indices, and we have set 16πG5 = 1.

For the black hole solution (4.7), all of the vector components of the stress tensor

complex vanish, and we find

E = r4
+, Πxx = Πyy = r4

+, ρ = 2β2r4
+, (4.12)

in agreement with previous results obtained by different methods [25, 26]. Note that

because of the slow falloff relative to the background, there is a potential finite β4r8
+ term in

E , that is, a piece which comes from terms quadratic in the departure from the background.

It is a non-trivial test of our definition of the stress tensor that this term vanishes.

For these asymptotically Schrödinger spacetimes, it was proposed in [23] that the stress

tensor could be obtained by taking the stress tensor for the corresponding asymptotically

AdS spacetime and taking the light cone reduction of it. This idea was applied to the study

of the hydrodynamics for the non-relativistic theories with Schrödinger symmetry in [26].

It is therefore important for us to compare this approach to our new proposal.

These two approaches a priori look quite different; one reason why we might never-

theless expect agreement is that the stress tensor was shown in [30] to give the conserved

charges associated with the asymptotic symmetries of the spacetime. In the Schrödinger

case, the action of symmetries like time translation will commute with the TsT transfor-

mation, so we can perform a time translation by transforming to the asymptotically AdS

spacetime, performing a time translation there, and transforming back to the asymptoti-

cally Schrödinger spacetime. Thus, the conserved charge obtained from the stress tensor

of [23], which generates time translation in the asymptotically AdS spacetime, is naturally

identified with the conserved charge which generates time translation in the asymptotically
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Schrödinger spacetime. This provides some physical motivation for agreement of the two

stress tensors.

For simplicity, let us consider an asymptotically Schrödinger spacetime which is ob-

tained by a TsT transformation from a vacuum asymptotically AdS spacetime. This does

not give the most general asymptotically Schrödinger spacetime (which would require us to

consider an asymptotically AdS spacetime with non-zero scalar and massive vector fields

in the bulk), but restricting consideration to this case leads to much simpler expressions,

and includes all the examples that have been explicitly considered so far in the literature.

If we start with a vacuum asymptotically AdS solution with metric

ds2
AdS = ḡµνdxµdxν = ḡαβdxαdxβ +

dr2

r2
, (4.13)

and we assume that the metric is independent of a coordinate x− which becomes null at

large distances, then by applying a TsT transformation we will obtain an asymptotically

Schrödinger solution with scalar field

e−2φ = 1 + ḡ−−, (4.14)

massive vector field

Aµ = e2φḡµ−, (4.15)

and metric

gµν = e−2φ/3ḡµν − e4φ/3ḡµ−ḡν−, (4.16)

which implies the inverse metric is

gµν = e2φ/3(ḡµν + δµ
−δν

−). (4.17)

Our definition of the non-relativistic stress tensor complex for the asymptoti-

cally Schrödinger spacetime corresponds to considering the light cone reduction of a

“stress tensor”

Tα
β = sα

β − 1

2
sαAβ =

√
−hhαγτγβ (4.18)

where

τγβ = πγβ +
1

2
e−8φ/3nµFµγAβ (4.19)

−1

2

(

−6 + (1 + c4φ)AδA
δ + c5(AδA

δ)2 + (2c4 − 4c5 + 3)φ2
)

hγβ ,

whereas [23] would consider the stress tensor for the asymptotically AdS spacetime, which

is simply

T̄α
β =

√

−h̄h̄αγ [π̄γβ + 3h̄γβ ]. (4.20)

To compare these two, let’s rewrite our stress tensor using the expression for the Schrödinger

fields in terms of the AdS metric. The unit normal in the asymptotically Schrödinger

geometry is nµ = reφ/3δµ
r , so

Kαβ =
1

2
reφ/3

(

−2

3
∂rφe−2φ/3h̄αβ + e−2φ/3∂rh̄αβ (4.21)

−4

3
∂rφe4φ/3h̄α−h̄β− − e4φ/3∂rh̄α−h̄β− − e4φ/3h̄α−∂rh̄β−

)

,
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which gives

παβ = e−φ/3π̄αβ +
1

2
re5φ/3

(

−2∂rφh̄α−h̄β−− ∂rh̄α−h̄β− − h̄α−∂rh̄β− + h̄γδ∂rh̄γδh̄α−h̄β−

)

,

(4.22)

and we have

1

2
nµe−8φ/3FµαAβ =

1

2
re5φ/3

(

2∂rφh̄α−h̄β− + ∂rh̄α−h̄β−

)

. (4.23)

Thus,

ταβ = e−φ/3π̄αβ +
1

2
re5φ/3(−h̄α−∂rh̄β− + h̄γδ∂rh̄γδh̄α−h̄β−) (4.24)

−1

2

(

−6 + (1 + c4φ)AαAα + c5(AαAα)2 + (2c4 − 4c5 + 3)φ2
)

hαβ

= e−φ/3(π̄αβ + 3h̄αβ) − e5φ/3h̄α−(π̄β− + 3h̄β−)

−1

2

(

6eφ/3 − 6 + (1 + c4φ)AαAα + c5(AαAα)2 + (2c4 − 4c5 + 3)φ2
)

hαβ .

The two expressions are thus clearly not manifestly the same. However, to compare them

we should consider the behaviour at large r.

The asymptotically AdS solution has

h̄αβ = r2ηαβ +
1

r2
h̄

(1)
αβ . (4.25)

This implies that hαβ ∼ r−2 except for h−− ∼ r0, and
√
−h ∼ r4, so for α 6= −, finite

contributions to Tα
β come from terms in τγβ which go like r−2, and we can neglect any

contribution which falls off more rapidly. We have π̄αβ + 3h̄αβ ∼ r−2, so the first term

in (4.24) gives a finite contribution. For α 6= +, h̄α− ∼ r−2, so the second term can be

neglected. For α = +, however, the second term gives a potentially divergent contribution

to the stress tensor. To calculate the last term in (4.24), it is useful to note that

AαAα = e8φ/3ḡ−−. (4.26)

We then find

G ≡ 6eφ/3 − 6 + (1 + c4φ)AαAα + c5(AαAα)2 + (2c4 − 4c5 + 3)φ2 (4.27)

=

(

83

216
+

5

12
(c4 − 4c5)

)

ḡ3
−− + . . . ∼ 1

r6
,

where the dots denote terms of higher order in a Taylor expansion in ḡ−−. The last term

hence can be neglected, except when α = β = + (as h++ ∼ r4 at large r).

Thus, for all the components where α 6= +,

ταβ = π̄αβ + 3h̄αβ + O(r−4). (4.28)

For α = +, β 6= +,

τ+β = −e5φ/3h̄+−(π̄β− + 3h̄β−) + e−φ/3(π̄β+ + 3h̄β+) + O(r−6), (4.29)
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where the first term is order r0, and the second term is order r−2. For α = +, β = +,

there is an order r−2 term from the last term in (4.24), so

τ++ = −e5φ/3h̄+−(π̄+− + 3h̄+−) + O(r−2). (4.30)

Let us now consider the implications of this asymptotic behaviour for our non-

relativistic stress tensor complex. The non-relativistic stress tensor complex defined

in (4.9), (4.10), (4.11) is constructed from the components Tα
β with α 6= −, so we are

mainly interested in these. For α = i,

T i
β =

√
−hhiγτγβ = e2φ/3r2τiβ + O(r−2) = T̄ i

β + O(r−2). (4.31)

Similarly, for α = +,

T+
β =

√
−hh+γτγβ = e2φ/3r2τ−β + O(r−2) = T̄+

β + O(r−2). (4.32)

Thus, for the components that contribute to our definition of the non-relativistic stress

tensor complex, we find precise agreement with the definition of [23]. Note in particular

that τ+β will not affect these contributions, as h+i, h++ ∼ r−6. Thus, our definition of

the non-relativistic stress tensor complex and the definition proposed in [23] will agree on

asymptotically Schrödinger solutions which are obtained by TsT transformation from a

vacuum asymptotically AdS solution.

It is also interesting to consider what happens for the remaining components of the

stress tensor, those with α = −. We have

T−
β =

√
−hh−γτγβ =

√
−he2φ/3[h̄−γτγβ + τ−β] (4.33)

=
√
−he2φ/3h̄−γ

[

e−φ/3(π̄γβ + 3h̄γβ) − 1

2
Ghγβ

]

+ O(r−2).

There are two sources of potentially divergent contributions in this term, coming from the

r0 part in τ+β, and the r−2 part in τ−β. These both involve factors of π̄β− + 3h̄β−, and

they cancel exactly to leave a finite result for this component of the stress tensor. The

term involving G is negligible except for γ = β = +, so the components T−
β for β 6= +

will also agree with the definition of [23]. The component T−
+, although finite, will not

in general agree with the definition of [23].5 However, this disagreement does not affect

the physics. To make contact with a non-relativistic theory by light cone reduction, we

are restricting to metrics which are independent of x−. This implies that the T−
β drop

out of the conservation equations; they are not part of the conserved currents associated

with the restricted diffeomorphism freedom which preserves the manifest Killing symmetry

along x−. A disagreement in these components thus has no physical consequences for the

non-relativistic dual.

In [25], it was shown that the action (4.2) satisfies δS = 0 for variations around

the black hole solution (4.7) satisfying some rather restrictive boundary conditions. We

5We could choose the constants c4, c5 to make the ḡ3
−− contribution to G vanish, and it would then agree.

However, it is better to use this freedom instead to eliminate a divergence in sφ, as we will shortly describe.
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have shown that the stress tensor complex is finite for a large family of asymptotically

Schrödinger solutions. Since our stress tensor is defined as the variation of the action with

respect to a variation in the asymptotic boundary values of the frame fields, this implies that

δS = 0 for any variation of the frame fields which does not change the asymptotic boundary

values. However, the coefficients of matter field variations sα, sφ will still diverge for general

asymptotically Schrödinger solutions (and in particular for the black hole solution (4.7)),

so we still need to impose restrictive boundary conditions on the variations of the matter

fields, as in [25]. We can make the divergent contribution to sφ vanish by choosing the

coefficients in the action so that c4−4c5+ 17
3 = 0, but we are still left with divergences in sα.

A more general understanding of these asymptotic boundary conditions is an interesting

problem for the future.

5 Asymptotic perturbation analysis for Lifshitz

We want to show that the action (2.7) is finite on-shell and satisfies δS = 0 for a

class of asymptotically Lifshitz spacetimes. Black hole solutions which asymptotically

approach (2.4) were obtained in [27, 28], and we could consider the behaviour for these

backgrounds. However, since the solutions are only known numerically, a direct analysis

of these solutions is difficult and not very illuminating.6 Instead, it is better to perform

a general analysis of the equations of motion in the asymptotic region. Finding exact

solutions of the equations of motion (2.2), (2.3) analytically is difficult. However, if the

solution is asymptotically Lifshitz, it will be a small perturbation of (2.4) for sufficiently

large r. Let us therefore study the solutions of the linearized equations of motion expand-

ing around (2.4). This calculation will also be useful for obtaining two-point functions on

the background (2.4), although we will not investigate this here. Note that the analysis of

the constant scalar perturbations was also performed in [27–29]; perturbative analysis of

related solutions was also performed in [37].

If we write the background as gµν , Aµ and the perturbations as hµν , aµ, then the

linearized equations are7

∇µfµν −∇µ(hµλF ν
λ ) −∇µhβνFµ

β +
1

2
∇λhF λν = m2aν (5.1)

and

R(1)
µν = Λhµν +

1

2
fµλF λ

ν +
1

2
fνλF λ

µ − 1

2
FµλFνσhλσ − 1

4
fλρF

λρgµν +
1

4
FλρF

ρ
σ hλσgµν

−1

8
FλρF

λρhµν +
1

2
m2aµAν +

1

2
m2aνAµ, (5.2)

where fµν = ∂µaν − ∂νaµ and

R(1)
µν =

1

2
gλσ [∇λ∇µhνσ + ∇λ∇νhµσ −∇µ∇νhλσ −∇λ∇σhµν ]. (5.3)

6The only known analytic black hole solutions [28, 29] to (2.2), (2.3) have non-flat boundary.
7Note that hµν denotes the perturbation of the metric, and indices are raised and lowered with the

background metric, so hµν is the perturbation of the metric with the indices raised, not the perturbation of

the inverse metric. This differs from the convention in the discussion of the variation of the action, where

δhµν is the variation of the inverse metric.
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It is convenient to define

htt = −r2zĥtt, hti = −r2zv1i + r2v2i, hij = r2ĥij , (5.4)

at = αrz

(

ât +
1

2
ĥtt

)

, ai = αrzv1i, ar = α
âr

r
. (5.5)

We choose a Gaussian normal gauge, so hrµ = 0. In terms of a frame field, this definition

corresponds to choosing the orthonormal frame

e(0) = rzê(0) = rz

[(

1 +
1

2
ĥtt

)

dt + v1idxi

]

, (5.6)

e(i) = rê(i) = r

[

v2idt +

(

δi
j +

1

2
ĥi

j

)

dxj

]

, e(3) =
dr

r
,

and the vector field components in the orthonormal frame to be

AM = α(1 + ât)δ
M
0 + αârδ

M
3 . (5.7)

That is, we are partially fixing the freedom in the choice of frame (local Lorentz invariance)

by choosing the frame vector e(0) to be parallel to the projection of the vector field A along

the boundary at constant r.

For our spacetime to be asymptotically Lifshitz, we will at least require that the

normalised perturbations ĥtt, v1i, v2i, ĥij , ât and âr all vanish as r → ∞. In terms of the

frame fields, we are saying that a necessary condition for the spacetime to be asymptotically

Lifshitz is that ê(0) → dt, ê(i) → dxi, AM → αδM
0 as r → ∞. We will be more precise

about our boundary conditions once we have solved the linearised equations of motion.

One of our goals is to show that the action (2.7) is finite on-shell. In the linearised

analysis, since the background solution has no vector-like parts in the spatial directions

along the boundary and the action is a scalar, the action to linear order will only involve

the scalar parts of the linearised perturbations. Furthermore, the integration over the

boundary directions makes the value of the action depend only on the zero-momentum

part of the perturbation. This also implies there is no contribution from Sderiv at linear

order. There is a potential divergence in the action from the region at large r, where

A2 = −2(z − 1)

z
(1 + 2ât), F 2 = −4z(z − 1)

(

1 + 2ât +
2r

z
∂rât +

r

z
∂rĥtt

)

. (5.8)

From the metric perturbation we have
√−g = rz+1[1 + 1

2 (ĥtt + ĥi
i)],

√
−h = rz+2[1 +

1
2 (ĥtt + ĥi

i)], where ĥi
i = δij ĥij ,

R = −2z2 − 4z − 6 − r2∂2
r ĥtt − r2∂2

r ĥi
i − (2z + 3)r∂rĥtt − (z + 4)r∂rĥ

i
i, (5.9)

and

K = z + 2 +
r

2
∂r(ĥtt + ĥi

i). (5.10)
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Putting all of this into the action (2.7) for a region r ≤ r0 gives

S

Vol
= bulk +

∫ r0

drrz+1
[

−(z + 2)(ĥtt + ĥi
i) + 2(z + 2)(z − 1)ât (5.11)

−(z + 4)r∂r(ĥtt + ĥi
i) + 2(z − 1)r∂rât − r2∂2

r (ĥtt + ĥi
i)

]

+R4
[

ĥtt + ĥi
i − 2(z − 1)ât + r∂r(ĥtt + ĥi

i)
]

r=r0

,

where we have performed the integral over t, x, y and divided out the overall volume in these

directions. We write “bulk” to indicate that we are only keeping track of the contribution

to the action from the region at large r, where a linearised analysis is appropriate. In

the next subsection, we will determine the asymptotic behaviour of these constant scalar

perturbations, and show that the potential divergences in the contributions we have written

explicitly in (5.11), coming from the region at large r, cancel to leave a finite result.

We also want to verify that the variation of the action vanishes on-shell for suitable

boundary conditions on the variations. Our approach will be to verify this by showing that

the stress tensor defined above is finite. The logic is that we can write the general on-shell

variation of the action as in (3.6), with the variation δAA restricted to a variation of δA0

by our choice of frame. If the action has finite variations under variations which change the

boundary data, the variation will then clearly vanish for any variations that do not change

the boundary data (i.e., those which fall off fast enough at the boundary). We will show

below as we analyse the perturbations that they give finite coefficients for variations of the

boundary data, up to some subtleties in the variation of A0. These subtleties are addressed

in section 5.3, showing that the variation of the action vanishes for suitable asymptotically

Lifshitz boundary conditions.

Consider therefore the calculation of the non-relativistic stress tensor complex defined

in section 3 at linear order. Since the sαβ and sβ are already linear in terms of the

perturbation, our prescription for the stress tensor complex reduces to

E = −2r−2zstt + αr−zst, Ei = 2r−2sti − αrz−2si, (5.12)

Pi = 2r−2zsti, Πij = −2r−2sij. (5.13)

For the general perturbations, we should now include contributions from Sderiv. We discuss

this part of the calculation in appendix A. The upshot of the analysis there is that the

contributions from the derivative terms are suppressed relative to the contribution from

the non-derivative part of the action, and as a result only make a finite contribution to the

component Ey in the stress tensor complex, where they can be chosen to cancel divergences

in the contributions from the non-derivative part of the action.

We can write the contribution from the remaining part of the action for our ansatz in

– 16 –



J
H
E
P
0
9
(
2
0
0
9
)
0
0
9

a relatively simple form in terms of the asymptotic fields:

E = −rz+2

[

r∂rĥ
i
i + α2(zât + r∂r(

1

2
ĥtt + ât) − r−z∂târ)

]

+ Ederiv, (5.14)

Ei = rz+2

[

r∂rv2i +
(z − 2)

z
r2(z−1)r∂rv1i −

2(z − 1)

z
rz−2∂iâr

]

+ Ederiv
i ,

Pi = rz+2[−r∂rv1i + r−2(z−1)r∂rv2i] + Pderiv
i ,

Πij = −rz+2[−r∂rĥttδij + r∂r(ĥij − δij ĥ
k
k) + 2(z − 1)âtδij ] + Πderiv

ij .

We will also want to evaluate

s0 = −r−zst = rz+2α

[

zât + r∂r

(

1

2
ĥtt + ât

)

− r−z∂târ

]

+ sderiv
0 . (5.15)

For completeness, we also note that

si = −rz+2α[rzr∂rv1i − ∂iâr]. (5.16)

In our linearised analysis, terms in the conservation equations involving the variation

of the matter fields like the one appearing on the right-hand side of (3.4) will not appear,

as both sA and the derivative ∂βAA are of linear order in the perturbation. We therefore

expect our stress tensor complex to obey the conservation equations (3.1), and we will

indeed find that the bulk equations of motion imply this conservation.

Finally, a note on the applicability of this linearised analysis. We can see from the

form of the stress tensor that perturbations where the normalised fields fall off like r−(z+2)

will be associated with finite contributions to some element of the stress tensor complex.

Thus, if we have linear perturbations where the normalised fields fall off like r−
1
2
(z+2),

then quadratic terms in these perturbations could make finite contributions to the stress

tensor complex, and the linearised analysis we are performing would not be justified by

the smallness of the fields in the asymptotic region; even to understand the asymptotic

behaviour of a generic asymptotically Lifshitz solution with such falloffs could require a

non-linear analysis.

5.1 Constant perturbations

Because the background is translation-invariant in t, x, y, we can decompose the perturba-

tions into plane wave modes, and modes of different frequencies will not mix. We consider

first the zero momentum part; perturbations which are constant in the boundary directions.

These constant perturbations can be decomposed into scalar, vector and tensor parts:

htt = −r2zf(r), hti = −r2zv1i(r) + r2v2i(r), hij = r2k(r)δij + r2kij(r), (5.17)

where

kij(r) =

[

td(r) to(r)

to(r) −td(r)

]

, (5.18)
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and

at = αrz

(

j(r) +
1

2
f(r)

)

, ai = αrzv1i(r). (5.19)

Note that a constant ar component is forced to vanish by the equations of motion. As

a consequence of the rotation invariance in the x, y plane in the background, the scalar,

vector and tensor sectors do not mix.

We consider first the constant scalar perturbations. This will include as a special

case the linearised version of the black hole solutions of [27, 28]. While this paper was

in preparation, the perturbations in this scalar sector were analysed in [29], which also

considers a background where the flat spatial slices are replaced by a sphere. Our results

agree with this previous work, although direct comparison is not straightforward as we

work in a different gauge.

The equations of motion for constant scalar modes reduce to

2r2j′′ = (z + 1)rf ′ − 4(z + 1)rj′ − (z + 4)(2z − 2)j, (5.20)

1

r2
(z + 1)(r4f ′)′ = (z − 1)(4z + 2)rj′ + (z − 1)(4z2 + 6z + 8)j, (5.21)

2(z + 1)rk′ = −(z + 1)rf ′ − 2(z − 1)rj′ − (z − 1)(2z − 4)j. (5.22)

The fact that these do not involve f, k undifferentiated reflects the freedom to shift coor-

dinates by rescaling t, x, y.

For z = 2, the solution is

j(r) = −c1 + c2 ln r

r4
+ c3, (5.23)

f(r) =
4c1 − 5c2 + 4c2 ln r

12r4
+ 4c3 ln r + c4, (5.24)

k(r) =
4c1 + 5c2 + 4c2 ln r

24r4
− 2c3 ln r + c5. (5.25)

We can set c4 = c5 = 0 by redefining the coordinates t, x, y. We should also set c3 = 0 to

satisfy the asymptotically Lifshitz boundary condition; that is, to ensure that the solution

is small at large r, consistent with our assumption.

For z 6= 2, the solution is

j(r) = − (z + 1)c1

(z − 1)rz+2
− (z + 1)c2

(z − 1)r
1
2
(z+2+βz)

+
(z + 1)c3

(z − 1)r
1
2
(z+2−βz)

, (5.26)

f(r) = 4
1

(z + 2)

c1

rz+2
+ 2

(5z − 2 − βz)

(z + 2 + βz)

c2

r
1
2
(z+2+βz)

(5.27)

−2
(5z − 2 + βz)

(z + 2 − βz)

c3

r
1
2
(z+2−βz)

+ c4,

k(r) = 2
1

(z + 2)

c1

rz+2
− 2

(3z − 4 − βz)

(z + 2 + βz)

c2

r
1
2
(z+2+βz)

(5.28)

+2
(3z − 4 + βz)

(z + 2 − βz)

c3

r
1
2
(z+2−βz)

+ c5,

where β2
z = 9z2 − 20z + 20 = (z + 2)2 + 8(z − 1)(z − 2).
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Let us use these solutions to be more precise about the asymptotically Lifshitz bound-

ary conditions. We see that there are constant modes in f and k, which can be interpreted

as changes in the boundary data for the metric. For j, by contrast, there is no constant

mode for general z. The slowest falloff in j is given by the mode parametrized by c3, which

falls off as r−
1
2
(z+2−βz) (it is constant in the special case z = 2). Thus, for 1 ≤ z < 2,

we want to interpret the mode parametrised by c3 as the boundary data for the vector

field. To fix this boundary data, we need to require that r
1
2
(z+2−βz)(AM − αδM

0 ) vanishes

as r → ∞.8 For z ≥ 2, this mode produces terms in f and k which grow at large r, and

hence violate the boundary conditions for those fields. It is therefore not clear whether

we can think of this as boundary data for the vector field in this case. For z ≥ 2, we will

simply impose the boundary condition that AM − αδM
0 vanishes as r → ∞. We therefore

adopt as our definition of asymptotically Lifshitz boundary conditions that ĥtt, v1i, v2i, ĥij

and ât vanish as r → ∞, and that for 1 ≤ z < 2, r
1
2
(z+2−βz)ât → 0 as r → ∞.

We thus have a two-parameter family of solutions in this constant scalar sector,

parametrized by c1, c2. In [29], the energy for these solutions was evaluated by back-

ground subtraction, and they found that for z ≤ 2, they needed to set c2 = 0 as well to

have a finite energy. We will see below that with our definition of the boundary energy

density, we get finite results for any z without further restricting the solutions.9 The di-

vergences found in [29] are due to using an action which does not include the surface terms

necessary to ensure the action is finite on-shell. In the cases z ≤ 2, the asymptotically

Lifshitz solution approaches the background too slowly at large r for these surface terms

to cancel out in the background subtraction calculation. A similar failure of background

subtraction occurs for the Schrödinger case [25, 37].

We first want to use these scalar modes to evaluate the on-shell value of the ac-

tion (5.11). For z = 2, we find
S

Vol
= bulk +

2

3
c2, (5.29)

and for z 6= 2, we find
S

Vol
= bulk +

2(z + 1)(z − 2)

(z + 2)
c1. (5.30)

Thus, we see that the potential divergences from the region at large r cancel, to leave a

finite answer for this part of the action. We have not explicitly considered the contribution

to the action from the interior of the spacetime, so there could still be a divergence there,

but this is unlikely. In appendix B, we consider the action for a set of static Euclidean

black hole solutions, and see explicitly that it is finite.

We next consider the contribution to the stress tensor from these modes, which gives

E = −rz+2

[

2r∂rk + α2

(

zj + r∂rj +
1

2
r∂rf

)]

=

{

4(z−2)
z c1 for z 6= 2
4c2
3 for z = 2.

(5.31)

8Note that this implies, surprisingly, that the boundary data are subleading compared to the background

value for AM . For general z, the allowed changes in the boundary data for the massive vector do not change

the αδM
0 term, but add a term falling off like r−

1

2
(z+2−βz) to it. Apart from the subtraction of the αδM

0

term, this is like the boundary condition for a massive vector in the relativistic case.
9 In fact, for constant modes, we have a finite energy even if we allow c3 6= 0.
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Note that the separate contributions are divergent (logarithmically for z = 2), but the

combination is finite. We have

Πij = −2r−2sij = −2rz+2

[

(z−1)j− r

2
∂rf−

r

2
∂rk

]

δij =

{

2(z − 2)c1δij for z 6= 2
4c2
3 δij for z = 2.

(5.32)

For the black hole solutions [27, 28], only these scalar modes are turned on, so this gives

the thermal stress tensor dual to the black hole solution. The bulk black hole can be used

to relate the energy density, which is an arbitrary constant of integration in our asymptotic

analysis, to the temperature. Note that this thermal stress tensor satisfies the equation of

state zE = δijΠij required by the anisotropic scaling symmetry.

For the vector modes, the equations are

r2v′′1i + (2z + 1)rv′1i + zr−2(z−1)rv′2i = 0, (5.33)

r2v′′2i + 5rv′2i + (z − 2)r2(z−1)rv′1i = 0. (5.34)

For z 6= 4 the solutions are

v1i(r) = c1i +
c2i

rz+2
+

c3i

r3z
, (5.35)

v2i(r) =
(z2 − 4)

z(z − 4)
c2ir

z−4 +
3z

(z + 2)

c3i

rz+2
+ c4i,

and for z = 4 we have

v1i(r) = c1i +
c2i

r6
+

c3i

r12
, (5.36)

v2i(r) = 3 ln(r)c2i + 2
c3i

r6
+ c4i.

These give contributions to the stress tensor complex which are

Ei = rz+2

[

r∂rv2i +
(z − 2)

z
r2(z−1)r∂rv1i

]

= −6(z − 1)c3i, (5.37)

and

Pi = rz+2[−r∂rv1i + r−2(z−1)r∂rv2i] =
2(z − 1)(z + 2)

z
c2i. (5.38)

In the vector solutions, c1i is a pure gauge mode corresponding to shifting t → t+c1ix
i,

and c4i is a pure gauge mode corresponding to shifting xi → xi + c4it. The contribution

of c2i to v2i falls off more slowly than r−(z+2)/2 for z > 2, so we would expect a linearised

analysis to be insufficient to correctly extract the boundary stress tensor for a generic

asymptotically Lifshitz geometry for z ≥ 2. For z ≥ 4, we need to set the coefficient c2i to

zero to satisfy the boundary conditions on v2i. This is a further restriction on the space

of allowed solutions, which makes the space of allowed solutions (at least in the linearised

approximation) two dimensions smaller. This restriction sets Pi = 0 for all asymptotically

Schrödinger solutions with z ≥ 4. It would be very interesting to understand this restriction

from the dual field theory point of view. It would also be interesting to see if one can
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construct solutions with a non-zero boost that are physically acceptable and at the same

time have c2i = 0.

For the tensor modes, the equations are

r2t′′d + (z + 3)rt′d = 0, (5.39)

r2t′′o + (z + 3)rt′o = 0, (5.40)

and the solutions are

td(r) = td1 +
td2

rz+2
, to(r) = to1 +

to2
rz+2

. (5.41)

The constant terms are pure gauge, corresponding to relative scaling and rotation of the

x, y coordinates respectively. The tensor modes source

Πij = −rz+2r∂rkij , (5.42)

which gives

Πxy = (z + 2)to2, Πxx = −Πyy = (z + 2)td2. (5.43)

Since all of the constant perturbation modes give constant components for the stress

tensor, the conservation equations are trivially satisfied.

In summary, for the constant perturbations, we have an eight-parameter family of solu-

tions of the linearised equations of motion satisfying our asymptotic boundary conditions.

Seven of these parameters correspond to the independent components of the stress tensor

complex; there is an additional linearised solution in the scalar sector which does not con-

tribute to the stress tensor at this order. For 1 ≤ z < 2, we have tightened our boundary

conditions by setting c3 = 0 even though this mode does not grow asymptotically. For

z ≥ 4, we must set Pi = 0 to satisfy our boundary conditions, and we have a six-parameter

family of solutions in the bulk.

5.2 General perturbations

Taking a particular plane wave mode, we can again decompose the perturbation into scalar

and vector parts (for non-zero momentum, there is no transverse tracefree tensor in two di-

mensions). We simplify the analysis by using the rotation invariance to take the momentum

to lie only along the x direction. Then we can write10

htt = −r2zf(r)eiωt+ikx, htx = k[−r2zs1(r) + r2s2(r)]e
iωt+ikx, (5.44)

hty = [−r2zv1(r) + r2v2(r)]e
iωt+ikx, (5.45)

hxx = r2
(

kL(r) + k2kT (r)
)

eiωt+ikx, hyy = r2
(

kL(r) − k2kT (r)
)

eiωt+ikx, (5.46)

hxy = r2kv3(r)e
iωt+ikx, (5.47)

and

a = αrzeiωt+ikx

[(

j(r) +
1

2
f(r)

)

dt + ks1(r)dx + v1(r)dy + i
p(r)

rz+1
dr

]

. (5.48)

10To avoid cluttering the notation, we will not introduce subscripts ω, k on the functions in this ansatz

to denote the mode we are considering. We hope this will not lead to confusion.
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The functions v1, v2, v3 represent divergence-free vector excitations, while the other func-

tions are scalars or scalar-derived vectors with respect to the rotational symmetry in the

x, y plane. The scalar modes and vector modes decouple, so we can analyse them separately.

5.2.1 Scalar modes

For the scalar part, one can bring the equations of motion to a nicer form by rescaling

s1 → ωs1, s2 → ωs2. The function p(r) appearing in ar is determined algebraically,

p(r) =
ω

4(z − 1)rz

[

−2rk′
L + 2(z − 1)kL + k2(rs′2 − r2z−1s′1 − 2(z − 1)s2)

]

(5.49)

and using this to eliminate p(r), the remaining equations of motion for the modes in the

scalar sector are

− 2(z − 1)rj′ + (z + 1)rf ′ − 6z(z − 1)j = −k2

r2
(−2(z + 1)r3k′

T + kL + f − k2kT ) (5.50)

− ω2

r2z
(rk′

L + 2(z + 1)r3(s′2 − r2(z−1)s′1) − (z + 1)kL)

−ω2k2

2r2z
(−rs′2 + r2z−1s′1 + 2(z + 1)s2 − 4r2(z−1)s1),

r2f ′′ − (2z − 3)rf ′ + 8(z − 1)2j =
k2

r2
(−2(2z + 1)r3k′

T + kL + 2f − k2kT ) (5.51)

+
ω2

r2z
(2(2z + 1)r3(s′2 − r2(z−1)s′1) − 4kL) +

4k2ω2

r2z
(s2 − r2(z−1)s1),

rk′
L + rf ′ − 2(z − 1)j = k2rk′

T + ω2(rs′1 − r−2(z−1)rs′2), (5.52)

r4k′′
T + (z + 3)r3k′

T − 1

2
f = −ω2

[

s1 + r−2(z−1)(kT − s2)
]

, (5.53)

− 2r4s′′2 + 2r2z+2s′′1 + 2(z − 5)r3s′2

+2(z + 3)r2z+1s′1 − 2rf ′ + 4(z − 1)j − 2(z − 2)kL

= k2(rs′2 − r2z−1s′1 − 2rk′
T − 2(z − 1)s2 + 2kT ) + 2ω2(r−2z+3s′2 − rs′1),

k2(−2rf ′ − 4r3k′
T − 2(z − 2)r2z+1s′1 − 2zr3s′2 + 2f + 4(z − 1)j − 2(z − 2)kL) (5.54)

+
ω2

r2(z−1)
(4r3s′2 − 4r2z+1s′1 − 4kL)

+
k2ω2

r2z
(2r2z+1s′1 − 2r3s′2 + 4r2s2 − 4r2zs1)

+k4(r2z−1s′1 − rs′2 + 2rk′
T + 2(z − 1)s2 − 2kT ) = 0.

For the scalar modes, the non-zero contributions to the boundary stress tensor complex

are

E = −rz+2

[

2r∂rkL + α2(zj + r∂r(
1

2
f + j) + ωr−zp)

]

eiωt+ikx + Ederiv, (5.55)

Ex = rz+2

[

kωr∂rs2 + kω
(z − 2)

z
r2(z−1)r∂rs1 +

2(z − 1)

z
krz−2p

]

eiωt+ikx + Ederiv
x ,

Px = rz+2[−kωr∂rs1 + kωr−2(z−1)r∂rs2]e
iωt+ikx + Pderiv

x ,

Πxx = −rz+2[−r∂rf + r∂r(−kL + k2kT ) + 2(z − 1)j]eiωt+ikx + Πderiv
xx ,

Πyy = −rz+2[−r∂rf + r∂r(−kL − k2kT ) + 2(z − 1)j]eiωt+ikx + Πderiv
yy .
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We see in appendix A that the derivative terms make a vanishing contribution for the

scalar modes.

The full stress tensor is conserved by virtue of the bulk equations of motion: for the

terms in (5.55), the xr component of Einstein’s equation gives the conservation equation

ωPx + kΠxx = 0, and a combination of the tr component of Einstein’s equation and the r

component of the massive vector equation gives the conservation equation ωE + kEx = 0.

We solve (5.50)–(5.54) by writing each of the functions in a power series in ω, k. If

we denote the functions collectively by F , we have F =
∑

l,m k2lω2mF (l,m). The equations

for the (0, 0) part of the functions are obtained by taking the k0ω0 part of (5.50)–(5.53)

and the k2 and ω2 parts of (5.54) (which imply the k0ω0 part of (5.54)). The equations

are then

− 2(z − 1)rj(0,0)′ + (z + 1)rf (0,0)′ − 6z(z − 1)j(0,0) = 0, (5.56)

r2f (0,0)′′ − (2z − 3)rf (0,0)′ + 8(z − 1)2j(0,0) = 0, (5.57)

rk
(0,0)′

L + rf (0,0)′ − 2(z − 1)j(0,0) = 0, (5.58)

r4k
(0,0)′′

T + (z + 3)r3k
(0,0)′

T − 1

2
f (0,0) = 0, (5.59)

2(z − 1)r3s
(0,0)′

2 + 2r3k
(0,0)′

T + rf (0,0)′ − f (0,0) − 2(z − 1)j(0,0) = 0, (5.60)

2(z − 1)r2(z−1)r3s
(0,0)′

1 +2r3k
(0,0)′

T +rf (0,0)′−f (0,0)+2(z−1)k
(0,0)
L −2(z−1)j(0,0) = 0. (5.61)

The solution of the first two equations for f , j is

j(0,0) =
(z + 1)d2

(z − 1)r
1
2
(z+2+βz)

+
(z + 1)d3

(z − 1)r
1
2
(z+2−βz)

, (5.62)

f (0,0) = −2(5z − 2 − βz)

(z + 2 + βz)

d2

r
1
2
(z+2+βz)

− 2(5z − 2 + βz)

(z + 2 − βz)

d3

r
1
2
(z+2−βz)

+ d4 (5.63)

for z 6= 2, and

j(0,0) =
3d2

r4
+ d3, f (0,0) = −d2

r4
+ 4d3 ln r + d4 (5.64)

for z = 2. In the other functions, in addition to the terms sourced by these modes, there

is an arbitrary constant term in kL, and a solution for k
(0,0)
T = d5 + d1r

−z−2. These source

terms in s1 and s2, which also have arbitrary constant terms. Set all the constant terms to

zero to satisfy the asymptotic boundary conditions, and also set d3 = 0 as in the discussion

of the constant modes.
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We are then left with two solutions of the coupled system: the first is11

j(0,0) =
(z + 1)c1

(z − 1)r
1
2
(z+2+βz)

, f (0,0) = −2(5z − 2 − βz)

(z + 2 + βz)

c1

r
1
2
(z+2+βz)

, (5.65)

k
(0,0)
L =

2(3z − 4 − βz)

(z + 2 + βz)

c1

r
1
2
(z+2+βz)

, (5.66)

k
(0,0)
T = − (z + 1)(5z − 2 − βz)

2(z + 2 + βz)(z2 − 3z + 4 + βz)

c1

r
1
2
(z+6+βz)

, (5.67)

s
(0,0)
1 = scoeff

1

c1

r2zr
1
2
(z+2+βz)

, s
(0,0)
2 = scoeff

2

c1

r2r
1
2
(z+2+βz)

(5.68)

for z 6= 2, and

j(0,0) =
3c1

r4
, f (0,0) = − c1

r4
, (5.69)

k
(0,0)
L = − c1

2r4
, k

(0,0)
T = − c1

24r6
, (5.70)

s
(0,0)
1 = − 3c1

32r8
, s

(0,0)
2 = − c1

24r6
(5.71)

for z = 2.

This first solution will not give a contribution to the stress tensor. For z > 2, its

contribution is a negative power of r, so it vanishes in any case. For z ≤ 2, the contribution

of this leading-order part is a non-negative power of r, but an explicit calculation shows

that the coefficient vanishes, as for the constant perturbations. As βz − (z + 2) > −1/2,

the first subleading piece, which is suppressed by k2/r2 relative to the leading pieces, will

always give a negative power of r, so we do not need to compute it. Thus, the mode

parametrized by c1 makes zero contribution to the stress tensor complex.

The other solution of the leading-order equations satisfying our boundary conditions is

k
(0,0)
T = − c2

rz+2
, s

(0,0)
1 =

(z + 2)c2

3z(z − 1)r2(z−1)rz+2
, s

(0,0)
2 =

c2

(z − 1)rz+2
. (5.72)

This will make a finite contribution to the stress tensor complex. To calculate it fully, we

need to first calculate some of the higher-order terms in our expansion.

Next we consider the solution for the functions F (1,0). The equations determining

these functions will be the k2 components of (5.50)–(5.54) and the k4 component of (5.54).

These equations are

−2(z−1)rj(1,0)′ +(z+1)rf (1,0)′−6z(z−1)j(1,0) = − 1

r2
(−2(z+1)r3k

(0,0)′

T +k
(0,0)
L +f (0,0)),

r2f (1,0)′′−(2z−3)rf (1,0)′ +8(z−1)2j(1,0) =
1

r2
(−2(2z+1)r3k

(0,0)′

T +k
(0,0)
L +2f (0,0)),

rk
(1,0)′

L + rf (1,0)′ − 2(z − 1)j(1,0) = rk
(0,0)′

T ,

r4k
(1,0)′′

T + (z + 3)r3k
(1,0)′

T − 1

2
f (1,0) = 0, (5.73)

11We are introducing new constants ci here to parametrize the independent solutions which satisfy the

asymptotic boundary conditions. The scoeff
1 , scoeff

2 are unimportant but complicated numerical factors, so

we do not write them explicitly.
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−2r4s
(1,0)′′

2 + 2r2z+2s
(1,0)′′

1 + 2(z − 5)r3s
(1,0)′

2 + 2(z + 3)r2z+1s
(1,0)′

1

−2rf (1,0)′ + 4(z − 1)j(1,0) − 2(z − 2)k
(1,0)
L

= (rs
(0,0)′

2 − r2z−1s
(0,0)′

1 − 2rk
(0,0)′

T − 2(z − 1)s
(0,0)
2 + 2k

(0,0)
T )

−2rf (1,0)′ − 4r3k
(1,0)′

T − 2(z − 2)r2z+1s
(1,0)′

1 − 2zr3s
(1,0)′

2

+2f (1,0) + 4(z − 1)j(1,0) − 2(z − 2)k
(1,0)
L

= −(r2z−1s
(0,0)′

1 − rs
(0,0)′

2 + 2rk
(0,0)′

T + 2(z − 1)s
(0,0)
2 − 2k

(0,0)
T ).

This system will have a homogeneous solution of the same form as the solution of the

F (0,0) equations; we can absorb that into the F (0,0) solution by a redefinition of c1, c2. We

will absorb all homogeneous solutions of the same form at higher orders in the same way,

promoting these constants to arbitrary functions of k, ω. Because the equations for s1 and

s2 are different, there is an additional homogeneous solution which did not appear in the

F (0,0) solutions. This is

s
(1,0)
1 =

c3

rz+2
, s

(1,0)
2 =

(z2 − 4)

z(z − 4)
c3r

z−4. (5.74)

As in the constant perturbations, we must set c3 = 0 for z ≥ 4 to satisfy the asymptotic

boundary condition that s2 → 0 as r → ∞.

In addition to the homogeneous solutions, we will have particular integrals for the

sources from the F (0,0) solutions. As we have said above, there will be non-trivial particular

integrals for the solution parametrized by c1, but they do not contribute to the stress tensor,

so we will not calculate them explicitly. For the solution parametrized by c2, a particular

integral for z 6= 2 is

f (1,0) =
2c2

(z − 2)rz+2
, j(1,0) = − (z + 2)(z + 1)c2

2(z − 2)(z − 1)rz+2
, (5.75)

k
(1,0)
L =

c2

(z − 2)rz+2
, k

(1,0)
T =

c2

2(z + 4)(z − 2)rz+4
, (5.76)

s
(1,0)
1 =

3c2

2(z − 1)(z − 2)(3z + 2)r2(z−1)rz+4
, s

(1,0)
2 = − (z − 4)c2

2z(z − 1)(z − 2)(z + 4)rz+4
.

(5.77)

For z = 2, a particular integral is

j(1,0) = −9c2 ln r

r4
, f (1,0) =

3c2 ln r

r4
+

c2

4r4
, k

(1,0)
L =

3c2 ln r

2r4
− c2

8r4
, (5.78)

k
(1,0)
T =

c2 ln r

8r6
+

3c2

32r6
, s

(1,0)
1 =

9c2 ln r

32r8
− 93c2

256r8
, s

(1,0)
2 =

c2 ln r

8r6
− 13c2

32r6
. (5.79)

Only the terms in (5.75) or (5.78) contribute to the stress tensor. This solution will

lead to further contributions in the higher F (l,m), but they are suppressed by further powers

of r, so they do not contribute to the stress tensor complex. We can therefore evaluate the
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contribution for this mode,

E =
2(z + 2)

z
c2k

2eiωt+ikx, Ex = −2(z + 2)

z
c2kωeiωt+ikx, (5.80)

Px = 0, Πxx = 0, Πyy = 2(z + 2)c2k
2eiωt+ikx.

(5.81)

The conservation equation ωE + kEx = 0 and the trace condition zE = δijΠij are satisfied

as required.

We can carry on and calculate the equations of motion for the F (0,1) functions. The

relevant equations are the ω2 parts of (5.50)–(5.53) and the k2ω2 and ω4 parts of (5.54).

As a result, the homogeneous solutions will be exactly the same as for the F (0,0), and we

are only interested in the particular integrals which can contribute to the stress tensor.

The only relevant terms are the ones proportional to c3. The only source term from the

F (1,0) functions in the equations for the F (0,1) functions is in the equation obtained from

the k2ω2 part of (5.54),

−2rf (0,1)′ − 4r3k
(0,1)′

T − 2(z − 2)r2z+1s
(0,1)′

1 − 2zr3s
(0,1)′

2 (5.82)

+2f (0,1) + 4(z − 1)j(0,1) − 2(z − 2)k
(0,1)
L

= − 1

r2(z−1)
(4r3s

(1,0)′

2 − 4r2z+1s
(1,0)′

1 − 4k
(1,0)
L ).

A particular integral which satisfies the full set of equations for the F (0,1) functions is

k
(0,1)
T = −2(z − 1)c3

zrz+2
. (5.83)

At higher orders, there will be no new homogeneous solutions. The homogeneous part

of the equations for F (l,m) is the same as F (1,0) for l 6= 0, and is the same as F (0,0) for

l = 0.12 Thus, we can absorb the homogeneous solution into a redefinition of c1, c2, c3.

As for the particular integrals, we have obtained all the terms involving c1, c2 which can

affect the stress tensor; higher terms are suppressed. For the solutions involving c3, there

is no source term in (5.50)–(5.53) for the functions f (2,0), j(2,0), k
(2,0)
L , k

(2,0)
T . The solution

is therefore simply

s
(2,0)
1 = − (z + 2)2

2z(z2 − 16)

c3

rz+4
, s

(2,0)
2 = − (z + 2)

2z(z − 6)
c3r

z−6. (5.84)

For the functions F (1,1), there is in principle a source term in (5.50)–(5.52), but it involves

the combination

rk
(0,1)′

T + rs
(1,0)′

1 − r−2(z−1)rs
(1,0)′

2 , (5.85)

which vanishes by virtue of the equation of motion for k
(0,1)
T , (5.82). Thus, the particular

integral will only involve k
(1,1)
T , s

(1,1)
1 and s

(1,1)
2 , with powers of r such that the resulting

particular integral makes no contribution to the stress tensor.

12The equations of motion for F (0,m) are in general the ω2m part of (5.50)–(5.53) and the k2ω2m and the

ω2m+2 parts of (5.54). One can check that in general the ω2m+2 part of (5.54) together with the ω2m part

of (5.52) imply the ω2m part of (5.54).
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Considering the stress tensor for the solutions proportional to c3, we see that there are

potentially divergent contributions to Ex coming from s
(l,0)
1 and s

(l,0)
2 for l < z. However,

for this mode (recall again that there is no source for kL at this order and so no kL in the

formula below)

Ex = rz+2ωk

[

rs′2 +
(z − 2)

z
r2z−1s′1 +

k2

2zr2
(rs′2 − r2z−1s′1 − 2(z − 1)s2)

]

eiωt+ikx, (5.86)

and this will vanish by virtue of the ω0 part of (5.54). This is not surprising; having learnt

that there are no divergent contributions to E , a divergent contribution to Ex would be

incompatible with the energy conservation equation. We can see this explicitly at the first

two orders in k2 using the s
(1,0)
i and s

(2,0)
i calculated above.

The contribution to the stress tensor from the solution parametrized by c3 is then

Px = 2
(z − 1)(z + 2)

z
ωk3c3e

iωt+ikx, Πxx = −Πyy = −2ω2k2 (z − 1)(z + 2)

z
c3e

iωt+ikx.

(5.87)

Note that the conservation equation ωPx + kΠxx = 0 is satisfied.

In summary, in the scalar sector, we have a three-parameter family of solutions of the

equations of motion which satisfy our asymptotic boundary conditions. The stress tensor

only depends on two of the parameters, and is finite and conserved, with all the components

we would expect;

E = kc′2e
iωt+ikx, Ex = −ωc′2e

iωt+ikx, (5.88)

Px = kc′3e
iωt+ikx, Πxx = −ωc′3e

iωt+ikx, Πyy = (zkc′2 + ωc′3)e
iωt+ikx, (5.89)

where to simplify the form of the stress tensor we write c′2 = 2 (z+2)
z kc2 and c′3 =

2 (z−1)(z+2)
z ωk2c3.

5.2.2 Vector modes

Consider now the vector modes, described by the functions v1(r), v2(r), v3(r). The equa-

tions of motion for these are

ω(rv′1 − r−2(z−1)rv′2) = −k2rv′3, (5.90)

r2v′′1 + (2z + 1)rv′1 + zr−2(z−1)rv′2 =

(

k2

r2
− ω2

r2z

)

v1, (5.91)

r2v′′3 + (z + 3)rv′3 + ω
v1

r2
− ω

v2

r2z
= − ω2

r2z
v3. (5.92)

For the vector part, the non-zero parts of the stress tensor complex are

Ey = rz+2

[

r∂rv2 +
(z − 2)

z
r2(z−1)r∂rv1

]

eiωt+ikx + Ederiv
y , (5.93)

Py = rz+2[−r∂rv1 + r−2(z−1)r∂rv2]e
iωt+ikx + Pderiv

y , (5.94)

Πxy = −rz+2kr∂rv3e
iωt+ikx + Πderiv

xy . (5.95)

The first equation (5.90) imposes the conservation equation ωPy + kΠxy = 0.
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Note that if ω = 0, the first equation implies that v′3 = 0, and v3 drops out of the

system of equations — it vanishes up to a possible constant term. We will drop constant

terms in v1, v2 and v3 as not satisfying the asymptotic boundary conditions. Therefore v3

will vanish if ω = 0, so we rescale v3 → ωv3. Then the equations of motion are

rv′1 − r−2(z−1)rv′2 = −k2rv′3, (5.96)

r2v′′1 + (2z + 1)rv′1 + zr−2(z−1)rv′2 =

(

k2

r2
− ω2

r2z

)

v1, (5.97)

r2v′′3 + (z + 3)rv′3 +
v1

r2
− v2

r2z
= − ω2

r2z
v3. (5.98)

We again solve these equations perturbatively in k2, ω2, writing F =
∑

l,m k2lω2mF (l,m)

and treating the r.h.s. as a source term for the solution at a given order determined in

terms of the solution at earlier orders. At the leading order, the solution is

v
(0,0)
1 (r) =

c4

r3z
, v

(0,0)
2 (r) =

3z

z + 2

c4

rz+2
, v

(0,0)
3 (r) =

c5

rz+2
+

(z − 1)

z(z + 2)(3z + 2)

c4

r3z+2
,

(5.99)

where we have once again set constant terms to zero by the boundary conditions. In terms

of the stress tensor, the constant c4 is associated with a finite contribution to Ey, and c5

is associated with a finite contribution to Πxy. To evaluate the full stress tensor, we need

some of the higher-order terms.

In this case, the equations are the same at each order, so there are no new homoge-

neous solutions; homogeneous solutions at higher order can be absorbed into a redefinition

of c4, c5. We therefore need to consider only relevant particular integrals. The partic-

ular integrals from the solution parametrized by c4 make no contribution to the stress

tensor. However, the particular integrals v
(l,0)
1 , v

(l,0)
2 for l < z associated to the solution

parametrized by c5 will make potentially divergent contributions to Ey. As in the constant

perturbations, for z ≥ 4, we will need to set c5 = 0 to satisfy the boundary condition

v2 → 0 as z → ∞. The divergences then involve the particular integrals up to l = 3,

which are

v
(1,0)
1 = − c5z

2(z − 1)rz+2
, v

(1,0)
2 = − c5(z

2 − 4)rz−4

2(z − 4)(z − 1)
,

v
(1,0)
3 = − c5

(z2 − 16)rz+4
, (5.100)

v
(2,0)
1 =

3c5z

4(z − 1)(z2 − 16)rz+4
, v

(2,0)
2 =

c5r
z−6

4(z − 6)(z − 1)
, (5.101)

v
(2,0)
3 = − c5(z − 8)

8(z2 − 16)(z2 − 36)rz+6
, (5.102)

v
(3,0)
1 =

c5z(z − 11)

16(z − 1)(z − 3)(z + 4)(z2 − 36)rz+6
, v

(3,0)
2 =

c5(z
2 − 3z + 8)rz−8

2(z − 3)(z − 8)(z2 − 16)
,

(5.103)

v
(3,0)
3 =

c5(5z
2 − 43z + 72)

24(z − 3)(z2 − 16)(z2 − 36)(z2 − 64)rz+8
. (5.104)
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Note that at z = 3, this form for the particular integral will not apply, and it will be

replaced by a solution involving logarithms, as occurred for z = 2 in the scalar sector. We

have not determined this solution explicitly as this is not a particularly interesting value of

z. We also need to consider the particular integral v
(0,1)
i for the solution parametrized by c5,

as the contribution to v2 would go like r−(z+2), and hence could make a finite contribution.

A particular integral is

v
(0,1)
1 = 0, v

(0,1)
2 = 0, v

(0,1)
3 = − c5

2z(3z + 2)r3z+2
, (5.105)

so this will make no contribution to the stress tensor.

We can now use this to calculate the value of the contribution to the stress tensor from

this mode for generic z. We have

Ey = rz+2

[

r∂rv2 +
(z − 2)

z
r2(z−1)r∂rv1

]

eiωt+ikx + Ederiv
y (5.106)

= −
[

6(z − 1)c4 +
c5

2(z − 4)
r2z−4k4 − (z − 5)c5

2(z − 3)(z − 6)(z2 − 16)
r2z−6k6

]

eiωt+ikx + Ederiv
y ,

while from appendix A, we have

Ederiv
y = c5

[(

− 2σ1

(z − 4)
− σ2

)

k4r2z−4 (5.107)

+

(

− (z − 8)σ1

2(z − 6)(z2 − 16)
+

3σ2

2(z2 − 16)
− σ3

)

k6r2z−6

]

eiωt+ikx.

The term at order k4 grows at large r for z > 2, and the term at order k6 grows at large r

for z > 3. Since we can only consider this mode for z < 4, there are no further divergences.

We can cancel the divergent terms by setting

σ2 = − 4σ1 + 1

2(z − 4)
, σ3 = −(z − 3)(7z − 44)σ1 + (z − 1)(z − 8)

4(z − 3)(z − 4)(z − 6)(z2 − 16)
. (5.108)

Thus, for generic z, we can obtain a finite stress tensor complex in the linearised approx-

imation by choosing appropriate curvature counterterms in our definition of the action.13

With this choice of action,

Ey = −6(z − 1)c4e
iωt+ikx. (5.109)

For the other components, we have

Py = rz+2[−r∂rv1 + r−2(z−1)r∂rv2]e
iωt+ikx + Pderiv

y = −(z + 2)c5k
2eiωt+ikx, (5.110)

and

Πxy = −kωrz+2r∂rv3e
iωt+ikx + Πderiv

xy = (z + 2)c5kωeiωt+ikx. (5.111)

We see in appendix A that the curvature components make no contributions to these

components. As a consistency check, we see that ωPy + kΠxy = 0.

13For z = 3, a different choice of coefficients will be required.
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In summary, for the non-zero momentum perturbations, we have a five-parameter

family of solutions (parametrized by c1, c2 and c3 in the scalar sector and c4 and c5 in the

vector sector). For z < 2, in the scalar sector, we imposed a tighter boundary condition

by setting d3 = 0. For the non-zero momentum perturbations, this is required to get a

finite energy density, and hence to satisfy δS = 0. Four of the parameters correspond to

the independent components of the stress tensor in this non-zero momentum sector; as in

the previous constant case, the scalar mode parametrized by c1 does not contribute to the

stress tensor complex at this linear order. For z ≥ 4, we must again set Pi = 0, and we are

left with a three-parameter family of solutions.

Note that as we said earlier, for z ≥ 2, this linearised calculation of the relation between

the asymptotic behaviour of the metric and the action will not be reliable for a general

perturbation. However, this calculation is always applicable if we consider a specific case

where the bulk spacetime is everywhere a small perturbation away from the background.

It is thus a significant result that can obtain a completely finite stress tensor complex at

this linearised level by an appropriate choice of counterterms in the action.

5.3 Vanishing of the variation of the action

We return briefly to the question of the vanishing of the variation of the action. We have

seen that all components of the stress tensor are finite. Thus, δS = 0 if δêA
α → 0 as r → ∞.

The coefficient of the variation of the vector field is

s0 = −α

[

zrz+2ât + rz+2r∂r

(

1

2
ĥtt + ât

)

− r2∂târ

]

+ sderiv
0 . (5.112)

Since ĥtt and ât have components that go like r−
1
2
(z+2+βz), s0 will have a divergence like

r
1
2
(z+2−βz), which gives a positive power of r for 1 ≤ z < 2. (For z = 2, this is replaced

by a ln r divergence). However, it is precisely for this range that we impose the stronger

boundary condition, which implies that δA0 vanishes more quickly than r−
1
2
(z+2−βz) as

r → ∞. This is precisely what is required to ensure that the s0δA
0 contribution also

vanishes, so we indeed satisfy δS = 0 on-shell.

Thus, for our asymptotic boundary conditions, (2.7) is a good action principle for the

asymptotically Lifshitz spacetimes, as it is finite on-shell and satisfies δS = 0 for arbitrary

variations satisfying the boundary conditions.

5.4 Operator dual to A0

We have shown that the stress tensor is finite for our action. We should also consider the

operator dual to A0, and see if its expectation value is finite. As we remarked earlier,

for 1 ≤ z < 2, it seems natural to think of the part of A0 falling off as r−
1
2
(z+2−βz) as a

non-normalizable mode (that is, as boundary data associated with the vector field). If we

write δA0 = r−
1
2
(z+2−βz)δĀ0, s̄0 = r

1
2
(z+2−βz)s0 is the coefficient of δĀ0 in the variation of

the action, which would be interpreted as the expectation value of the dual operator. The

term falling off as r−
1
2
(z+2+βz) makes a finite contribution to s̄0, so it can be thought of

as the corresponding normalizable mode. In our linearised analysis, this implies that the

additional scalar mode which does not contribute to the stress tensor can be interpreted
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as the expectation value of the operator dual to changes in the non-normalisable mode for

the vector field.

However, it is difficult to extend this analysis to z ≥ 2. The mode which falls off like

r−
1
2
(z+2−βz) then violates our boundary conditions for the metric components, so it is not

clear if it can still be interpreted as boundary data for the vector field. If we calculate s̄0

anyway, it has a finite contribution from the mode which falls off as r−
1
2
(z+2+βz), which

suggests this mode can be given the same interpretation, but it now also has a divergent

contribution from the mode which falls off as r−(z+2). If we want to think of the mode in

our linearised analysis which falls off as r−
1
2
(z+2−βz) as the boundary data we are varying,

then because this mode appears in f and k as well as j, the coefficient of this variation is

really a linear combination of s̄0, E and Πi
i (this didn’t make any difference for 1 ≤ z < 2

because the contribution from the mode which falls off as r−(z+2) vanished). However, this

does not seem to cancel the divergence. There is a combination of s̄0, E and Πi
i which

will cancel the divergent contribution from the mode which falls off as r−(z+2), but the

coefficients are different from those implied by the solution of the linearised equations. We

leave the resolution of this conundrum for future work.

6 Discussion

The main results of this paper are that first, we have constructed an appropriate action

principle for asymptotically Lifshitz spacetimes with a flat boundary in the massive vector

theory of [31]. We then proposed a definition of the non-relativistic stress tensor complex

for both the Schrödinger and Lifshitz cases in terms of the variation of the action. Our

proposal corresponds to the proposal of [30] in the relativistic case, taking the appropriate

variation to be a variation of the boundary frame fields holding the matter fields with

tangent space indices fixed. This is one of our key results: the major difference between

the calculation of the stress tensor in these cases and the more familiar AdS case is not

the different scaling of different directions, but simply the fact that we need to take the

contribution to the stress tensor from variation of the vector field into account. Once we

have correctly accounted for this, we get finite answers for the stress tensor complex.

In the Schrödinger case, we have shown that this proposal agrees with the stress tensor

complex obtained by re-interpreting the stress tensor of the related asymptotically AdS

spacetime in terms of the non-relativistic field theory [23], for asymptotically Schrödinger

spacetimes which can be obtained by TsT transformation from a vacuum asymptotically

AdS spacetime. We expect this will be true in general, but have left the detailed calculation

for future work. In the Lifshitz case, we have solved the linearised equations of motion for

the general perturbation about the background (2.4). This enables us to relate the stress

tensor to the asymptotic falloff of the metric and vector fields of an asymptotically Lifshitz

spacetime. We have shown that the resulting stress tensor is finite.

There are a number of interesting directions for future work. For the Schrödinger

case, it would be useful to establish the minimal boundary conditions for which we have a

well-defined action principle, parallelling our analysis for the Lifshitz case. Our results on

finiteness of the stress tensor imply that we can relax the boundary conditions somewhat
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relative to those used in [25], but as in the Lifshitz case, there are divergences in the matter

sector that need to be addressed. There has been extensive work on obtaining Schrödinger

geometries in different contexts [38–42], and it would be useful to work out the boundary

counterterms required to construct appropriate action principles in these different cases.

The fact that we now have a proposal for constructing the stress tensor directly in the

asymptotically Schrödinger solution is particularly useful for these cases where we do not

have a solution-generating transformation relating asymptotically AdS and asymptotically

Schrödinger solutions.

For the asymptotically Lifshitz geometries, to complete the analysis of one-point func-

tions, we need to resolve the problems with the calculation of the expectation value for the

operator dual to the vector field raised in the previous subsection. It would also be inter-

esting to use our action to calculate two-point functions in the pure Lifshitz background.

In the study of finite-temperature geometries, it would be interesting to further pursue the

holographic renormalization framework by understanding the construction of more general

black hole solutions corresponding to arbitrary hydrodynamic stress tensors from the dual

field theory point of view. A natural next step is to construct a black hole with non-zero

spatial momentum. Because the background geometry does not have a boost invariance,

this cannot be obtained by simply boosting the known solutions.

Lifshitz points usually occur at the juncture of three phase boundaries. There is more

than one ordered phase below a critical temperature. Depending on an external control

parameter, for instance an external field, one can make a transition from an ordered phase

where the condensate is spatially uniform to a new ordered phase where the order is inhomo-

geneous; that is, the critical system is allowed to have a phase where the Landau energy of

the system is minimized by a non-uniform condensate rather than a homogeneous one [43].

Lifshitz critical points are relevant for studying interesting condensed matter systems in-

cluding superconductors and Liquid Crystals among others [44] and [45]. Recently hairy

black holes in AdS have been of central importance in modeling second order transitions

in the context of AdS/CFT (notably superfluid/superconductor transition). The second

order transition was modeled by a charged scalar condensing in the vicinity of a black hole

event horizon [46, 47] in AdS. Perhaps the first step to model a Lifshitz point at finite tem-

perature is to study a similar set up but with the bulk black hole replaced with a Lifshitz

black hole; one should see if a hairy Lifshitz black hole with z 6= 1 can be constructed.

For both cases, it would be interesting to extend the analysis to consider more general

boundary data. We have restricted ourselves to the case where the boundary is flat,

but a similar definition of the stress tensor can be applied for a general curved spatial

metric gij . The most interesting case to consider is when the boundary metric is a sphere.

This introduces additional slow falloff terms in the asymptotics, so we would need to

check again that the resulting stress tensor is finite, and hence that we have a well-defined

action principle for such boundary conditions. The perturbation analysis for asymptotically

Lifshitz spacetimes with a spherical boundary has been initiated in [27, 29].

At a more formal level, we would like to have a better understanding of the possible

boundary data for asymptotically Lifshitz spacetimes. In particular, there are issues we

have not yet fully understood about the meaning of our calculation of the energy flux
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from the point of view of a non-relativistic theory. By analogy with the relativistic case,

we have constructed our stress tensor by considering arbitrary variations of the boundary

data, including variations δê
(0)
i , which give the energy flux. However, introducing such

components does not seem natural from the point of view of a non-relativistic theory. In a

non-relativistic theory, the flat background spacetime we considered above can be thought

of as a fiber bundle, with the spatial slices fibered over the time direction [48]. Each

spatial slice corresponds to a moment in time, and relative position in the spatial slices is

invariantly defined, but there is no invariant notion of relative position in different spatial

slices. Allowing components ê
(i)
t is consistent with this fiber bundle structure, but it is not

clear how ê
(0)
i would be. It would be interesting to understand this distinction between the

different components of the stress tensor complex more fully.

Another general issue is to find a truncation of string theory which gives a Lifshitz

geometry with anisotropic scaling symmetry. That is, where the metric takes the form (2.1),

and the matter fields are also invariant under the isometry t → λzt, xi → λxi, r → λ−1r.

The symmetry implies that any scalar field must be a constant, which makes it difficult to

find an embedding in string theory, where a timelike vector field is usually accompanied

by a non-trivial scalar.

An important general issue for applications of holography to condensed matter systems

is that it is not generally understood what the conditions are under which the theory has

a classical weakly curved gravitational dual. That is, what is the analogue of the large

N limit for gauge theories which implies that quantum corrections to the gravity theory

under control?
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A Derivative contributions to the Lifshitz stress tensor

In this appendix, we will evaluate the contributions of the part of the boundary action

involving derivatives to the stress tensor for the asymptotically Lifshitz spacetimes in our

linearised perturbative analysis. We will not discuss the most general possible derivative

terms, but consider a simple set of terms up to fourth order in derivatives which are

sufficient to cancel the divergences in Ey, giving us a finite stress tensor complex for the

linearised perturbations. The form of the action will not be uniquely fixed by imposing

finiteness of the stress tensor; our aim here is simply to show that there is a choice for the

counterterms Sderiv which gives a finite answer for the stress tensor. We consider an action

Sderiv =
1

16πG4

∫

d3ξ
√
−h[σ1R

h + σ2∇αAβ∇αAβ + σ3(�Aα)(�Aα)], (A.1)

where Rh is the curvature of the boundary metric, and the σi are arbitrary constants.

– 33 –



J
H
E
P
0
9
(
2
0
0
9
)
0
0
9

We get no contribution from Sderiv for constant perturbations. For the non-zero mo-

mentum modes considered in section 5.2, the contribution to the boundary stress tensor

complex becomes

Ederiv = −rzk2[σ1(kL − k2kT ) + 2α2ω(σ2 − σ3�)s1]e
iωt+ikx, (A.2)

Ederiv
x = rzkω[σ1(kL − k2kT ) + 2α2ω(σ2 − σ3�)s1]e

iωt+ikx,

Ederiv
y = −

[

σ1(r
z(k2ωv3−k2v2)+r3z−2k2v1)−α2r3z

(

k2

r2
−2

ω2

r2z

)

(σ2 − σ3�)v1

]

eiωt+ikx,

Pderiv
x = rzk[σ1r

−2z+2ω(kL − k2kT ) + 2α2k2(σ2 − σ3�)s1]e
iωt+ikx,

Pderiv
y = −rzk2[σ1(r

−2z+2(ωv3 − v2) + v1) + α2(σ2 − σ3�)v1]e
iωt+ikx,

Πderiv
xx = −rzω[σ1r

−2z+2ω(kL − k2kT ) + 2α2k2(σ2 − σ3�)s1]e
iωt+ikx,

Πderiv
xy = rzkω[σ1(r

−2z+2(ωv3 − v2) + v1) + α2(σ2 − σ3�)v1]e
iωt+ikx,

Πderiv
yy = σ1[r

z(−k2f − 2k2ωs1) + r2−z(2k2ωs2 − ω2kL − k2ω2kT )]eiωt+ikx,

where for the plane wave perturbations, � = ω2

r2z − k2

r2 . We can see immediately that this

contribution to the stress tensor is separately conserved, as we would expect: ωEderiv +

kEderiv
x = 0, ωPderiv

x + kΠderiv
xx = 0, ωPderiv

y + kΠderiv
xy = 0. Note that this did not require

the use of the equations of motion, unlike for the part of the action we treated in the body

of the paper.

The contributions to most components of the stress tensor complex from the derivative

terms will vanish. The general point is that the derivative terms are suppressed relative to

the terms considered earlier by factors of k2/r2 or ω2/r2z. Hence when the earlier terms give

finite contributions, the derivative terms will give vanishing contributions. Explicitly, the

scalar components Ederiv, Ederiv
x ,Pderiv

x ,Πderiv
xx , and Πderiv

yy involve rzf , rzkL, rzkT , rzs1 and

rzs2, (or smaller powers of r) all of which vanish for the general solution of the linearised

equations satisfying our boundary conditions obtained in section 5.2. Similarly, for the

vector sector, the components Pderiv
y and Πderiv

xy involve r−z+2v3, r−z+2v2 and rzv1, all of

which vanish for the general solution of the linearised equations satisfying our boundary

conditions obtained in section 5.2.

The one exception is Ey, which involves rzv3, rzv2, and r3z−2v1, which vanish for the

solution parametrized by c4, but not for that parametrized by c5. This is precisely where

we found divergences for the terms coming from the non-derivative part of the action, so

we want to evaluate the derivative terms and see that we can choose the coefficients to

cancel these divergences. It is the v1 and v2 terms which produce potential divergences;

there is a term which goes like k4r2z−4 from putting v
(1,0)
i in the σ1, σ2 terms, and terms

that go like k6r2z−6 from putting v
(2,0)
i in the σ1, σ2 terms and from putting v

(1,0)
i in the σ3

term. As we only have a c5 mode for z < 4, these are the only potential finite or divergent

terms. Putting them together, the divergent terms for this mode are

Ederiv
y = c5

[(

− 2σ1

(z − 4)
− σ2

)

k4r2z−4 (A.3)

+

(

− (z − 8)σ1

2(z − 6)(z2 − 16)
+

3σ2

2(z2 − 16)
− σ3

)

k6r2z−6

]

eiωt+ikx.
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The terms we are omitting in this expression vanish as r → ∞ for z < 4. We can then

choose the coefficients σi to cancel these divergences against the divergences in Ey from the

non-derivative part of the action; we do this explicitly in section 5.2. Since there are two

divergences to cancel and three coefficients, this will not fix the form of the action uniquely.

Thus, there is an action for which the stress tensor is finite, but this condition does not

determine a unique choice of the action. We kept two terms at second order in derivatives

in our discussion of Sderiv to illustrate this failure to fix a unique action.

If we considered more general boundary data, such as where the spatial metric is

replaced by a sphere, there will be further constraints on the coefficients in the derivative

terms. For example, if we consider a Lifshitz spacetime where the spatial sections are

spheres, the term involving the curvature of the boundary metric will contribute to the

action, but the terms involving derivatives of the vector field will not. The coefficient of

the curvature term can then be fixed by cancelling the divergence in the on-shell action

arising from the new terms in the metric at relative order 1/r2. We leave a detailed

discussion of the extension of our analysis to more general boundary data for future work.

B Euclidean action and thermodynamic energy

In this section, we show that our definition of the energy density for asymptotically Lifshitz

spacetimes agrees with the thermodynamic energy density obtained by using the Euclidean

version of the black hole solution as a saddle-point in the path integral for a class of static

asymptotically Lifshitz black hole spacetimes. Our analysis in this section will not use

the linearised analysis we used previously; we find that we can rewrite the action for the

black hole solutions we consider in an appropriate form just by using the equations of

motion (2.2), (2.3).

We consider a metric ansatz

ds2 = −p(r)dt2 + q(r)(dx2 + dy2) +
dr2

r2
, At = At(r). (B.1)

This will give a black hole solution if there is an event horizon at r = rH , where p(r) =

pH(r − rH)2 + O(r − rH)3. For a regular horizon, we must also have At(r) = AtH(r −
rH)+O(r−rH)3. We assume that there is a solution of the equations of motion with these

properties; such solutions were constructed numerically in [27, 28].

If we rotate t → −iτ , the Euclidean black hole solution gives a saddle-point approxi-

mation to the path integral defining the thermal partition function at temperature

TH = rH

√
pH

2π
. (B.2)

In the Euclidean black hole solution, the radial coordinate is restricted to rH ≤ r < ∞,

with a smooth origin at r = rH once we choose ∆τ = β = T−1
H . The action for this black

hole solution gives an approximation to the free energy, F = THIEucl. Since the solution

is translationally invariant in x and y, it is natural to divide by the coordinate volume in

those directions to define the free energy density f = THIEucl/V2. The entropy density is
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given by the area of the black hole horizon,

s =
A

4G4
=

q(rH)

4G4
, (B.3)

so we can define the thermodynamic energy density by

f = Ethermo − THs. (B.4)

We want to see that this agrees with the energy density we defined previously, Ethermo = E .

To do so, we use the equations of motion to rewrite the on-shell Euclidean action (2.7)

in terms of boundary terms at the asymptotic boundary and at the horizon.

After the analytic continuation t → −iτ , the action of the Euclidean solution is

IE = − 1

16πG4

∫

d4x
√

g

(

R − 2Λ − 1

4
FµνFµν − 1

2
m2AµAµ

)

(B.5)

− 1

16πG4

∫

d3ξ
√

h(2K − 4 − zα
√

−AαAα) − Ideriv.

To relate the action to the boundary terms, it is convenient to use the equation of motion

for the vector field (2.3) to write m2AµAµ + 1
2FµνFµν = ∇µ(Fµ

ν Aν), so

IE = − 1

16πG4

∫

d4x
√

g

(

R − 2Λ +
1

4
FµνFµν +

1

2
m2AµAµ

)

(B.6)

+
1

16πG4

∫

d3ξ
√

h(nµFµνAν − 2K + 4 + zα
√

−AαAα) − Ideriv.

Now for the ansatz (B.1), the derivative terms do not contribute and the only non-zero

component of Fµν is Frt = −Ftr, so AtA
t = AµAµ and FrtF

rt = 1
2FµνFµν , and hence the

Einstein equations (2.2) imply

Rx
x + Ry

y + Rr
r − Rt

t = 2Λ − 1

4
FµνFµν − 1

2
m2AµAµ. (B.7)

Thus, the on-shell action for the ansatz (B.1) is

IE = − 1

16πG4

∫

d4x
√

g2Rt
t +

1

16πG4

∫

d3ξ
√

h(nµFµνAν −2K +4+ zα
√

−AαAα). (B.8)

Furthermore, using the form of the metric (B.1), we can show

√
gRt

t = −(
√

hKt
t)

′

, (B.9)

so the integration over r can be rewritten in terms of boundary terms. The integration

over τ and x, y gives an overall factor of βV2, which we divide out. Thus,

16πG4
IE

βV2
=

√
h(2Kt

t + nµFµνAν − 2K + 4 + zα
√

−AµAµ) |rb
−2

√
hKt

t |rH
, (B.10)

where rb and rH are the location of the boundary and the horizon respectively. At

the horizon,

2
√

hKt
t|rH

= r
q(r)p(r)

′

√

p(r)
|rH

= 2rH
√

pHq(rH) = 16πG4THs, (B.11)
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so the surface term at the horizon reproduces the term −THs in the free energy density.

The surface term at infinity is hence giving the thermodynamic energy density. Now

using (2.8), (2.9),

E = 2st
t − stAt =

√
−h(2Kt

t − 2K + 4 + nµF ν
µ Aν + zα

√

−AµAµ)|rb
, (B.12)

so the surface term at infinity in (B.10) is precisely our energy density; that is, Ethermo = E
as desired.
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